Geothermal gradients in continental magmatic arcs: Constraints from the eastern Peninsular Ranges batholith, Baja California, México

نویسندگان

  • David A. Rothstein
  • Craig E. Manning
چکیده

In continental arcs the extension of geothermal gradients derived from shallow crustal levels to depth predicts widespread melting at pressures that are inconsistent with seismic studies. Numerical models of low-pressure metamorphism in continental arcs suggest that these extrapolations are problematic because magmatic advection is the dominant mechanism of heat transport in these terranes rather than conduction from the base of the lithosphere. Metamorphic thermobarometry data from the middle crust of the eastern Peninsular Ranges batholith in Baja California, México, provide a useful fi eld test of these models. Graphite-bearing pelitic and semi-pelitic schists record peak metamorphic temperatures of 475–720 °C at pressures of 3– 6 kbar. These data bridge a gap between shallow and deep crustal levels of continental magmatic arcs in the southwestern United States and Baja California, México. Recognition of the transient, isobaric heating that accompanies contact metamorphism allows the defi nition of a gradient in minimum wall-rock temperatures of ~22 °C/km from 10 to 25 km with thermobarometric data from the eastern Peninsular Ranges batholith and other continental arcs that have relatively simple thermal histories. This gradient defi nes a maximum background geotherm that reconciles the results of geophysical and numerical models with wall-rock thermobarometry and is consistent with the formation of granulites in the lower crust of sub-arc regions and numerical models of the thermal effects of nested plutons. Recognition of the proposed geotherm may lower estimates of the depth to the seismic Moho and increase strain and unroofing rates inferred from structural and thermochronologic studies, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controls on orogenesis along an ocean-continent margin transition in the Jura-Cretaceous Peninsular Ranges batholith

The Jura-Cretaceous Peninsular Ranges batholith (PRb) of southern and Baja California is a remarkable example of a zoned batholith containing distinct oceanic (western) and continental (eastern) basements. The transition between these basements is marked by a crustal-scale boundary along which distinct volcanosedimentary, structural, and metamorphic histories evolved during Mesozoic orogenesis....

متن کامل

Jurassic peraluminous gneissic granites in axial zone of Peninsular Ranges, southern California

The Peninsular Ranges batholith of southern California and Baja California, México, is well recognized as a prime example of an I-type Cretaceous batholith. Often overlooked, however, is a volumetrically signiÞ cant amount of pre-Cretaceous gneissic granite in the axial zone of the batholith. New U-Pb zircon age data conÞ rm that the metaluminous and peraluminous plutonic bodies were emplaced d...

متن کامل

Constraints on the bulk composition and root foundering rates of continental arcs: A California arc perspective

[1] Garnet pyroxenites are the most common deep lithospheric xenolith assemblages found in Miocene volcanic rocks that erupted through the central part of the Sierra Nevada batholith. Elemental concentrations and isotope ratios are used to argue that the Sierra Nevada granitoids and the pyroxenite xenoliths are the melts and the residues/cumulates, respectively, resulting from partial melting/f...

متن کامل

The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation.

Continental crust is too Si-rich and Mg-poor to derive directly from mantle melting, which generates basaltic rather than felsic magmas. Converting basalt to more felsic compositions requires a second step involving Mg loss, which is thought to be dominated by internal igneous differentiation. However, igneous differentiation alone may not be able to generate granites, the most silicic endmembe...

متن کامل

Continental crust formation at arcs, the arclogite ‘‘delamination’’ cycle, and one origin for fertile melting anomalies in the mantle

The total magmatic output in modern arcs, where continental crust is now being formed, is believed to derive from melting of the mantle wedge and is largely basaltic. Globally averaged continental crust, however, has an andesitic bulk composition and is hence too silicic to have been derived directly from the mantle. It is well known that one way this imbalance can be reconciled is if the paren...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003